cPKC regulates interphase nuclear size during Xenopus development
نویسندگان
چکیده
منابع مشابه
cPKC regulates interphase nuclear size during Xenopus development
Dramatic changes in cell and nuclear size occur during development and differentiation, and aberrant nuclear size is associated with many disease states. However, the mechanisms that regulate nuclear size are largely unknown. A robust system for investigating nuclear size is early Xenopus laevis development, during which reductions in nuclear size occur without changes in DNA content. To identi...
متن کاملPKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells
How nuclear size is regulated is a fundamental cell-biological question with relevance to cancers, which often exhibit enlarged nuclei. We previously reported that conventional protein kinase C (cPKC) contributes to nuclear size reductions that occur during early Xenopus development. Here we report that PKC-mediated phosphorylation of lamin B3 (LB3) contributes to this mechanism of nuclear size...
متن کاملNuclear Size Scaling during Xenopus Early Development Contributes to Midblastula Transition Timing
Early Xenopus laevis embryogenesis is a robust system for investigating mechanisms of developmental timing. After a series of rapid cell divisions with concomitant reductions in cell size, the first major developmental transition is the midblastula transition (MBT), when zygotic transcription begins and cell cycles elongate. Whereas the maintenance of a constant nuclear-to-cytoplasmic (N/C) vol...
متن کاملLocalized JNK signaling regulates organ size during development.
A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes ...
متن کاملThe nuclear import factor p10 regulates the functional size of the nuclear pore complex during oogenesis.
Previtellogenic, stage-1 Xenopus oocytes produce mainly 5S and tRNA, whereas vitellogenic oocytes, stages 2-6, synthesize predominantly 18S and 28S rRNA. Using nucleoplasmin-coated gold as a transport substrate, it was determined that the shift in synthesis from small to large RNAs during oogenesis is accompanied by an increase in both the rates of signal-mediated nuclear import and the functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 2014
ISSN: 1540-8140,0021-9525
DOI: 10.1083/jcb.201406004